Data Structures and Algorithms: Jan—Apr 2015 Midterm Exam

Instructions. There are five questions. All problems have equal weightage. When algorithms are asked, give a brief, but complete, description (in pseudocode form or in the form of steps) and a brief (in one or two sentences) proof of correctness too.

- 1. Solve any *one* of (a) or (b).
 - (a) Given a list of *distinct* elements in non-decreasing order, give an algorithm to find, if any, an index i such that A[i] = i in $O(\log n)$ time. Prove an $\Omega(n)$ lower bound for the problem, if the distinctness assumption is removed.
 - (b) The Hadamard matrices H_0, H_1, H_2, \ldots are defined as follows:
 - H_0 is the 1×1 matrix [1].
 - For k > 0, H_k is the $2^k \times 2^k$ matrix:

$$H_k = \begin{bmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{bmatrix}$$

Show that if v is a column vector of length $n = 2^k$, then the matrix-vector product $(H_k)v$ can be calculated using $O(n \log n)$ operations. Assume that all the numbers involved are small enough that basic arithmetic operations like addition and multiplication take unit time.

- Let M(m, n) be the optimal number of comparisons to merge two sorted lists, one of size m and one of size n. Assume all elements are distinct.
 Solve any one of (a) or (b).
 - (a) Show that $m + n 1 \ge M(m, n) \ge \lceil \log \binom{m+n}{n} \rceil$
 - (b) Show that when $M(n,n) \ge 2n-1$ (using an adversary argument). Does the lower bound hold even for the case when m is not equal to n?
- 3. Given a balanced binary search tree (BST), suppose we want to support the operations find(k, S) which returns the k-th smallest element (for $1 \le k \le n$) in the set S of keys stored in the tree. How would you augment the balanced BST to support this operation in $O(\log n)$ time? Argue that this augmentation can be maintained in $O(\log n)$ time under insertions, deletions and search.
- 4. Recall that an instance of the SET COVER problem consists of a ground set U, and a family \mathcal{F} of subsets of U. The problem asks for a subfamily of the smallest size whose union is the ground set. In other words, we would like to minimize $|\mathcal{H}|$ where $\mathcal{H} \subseteq \mathcal{F}$ is such that $\bigcup_{S \in \mathcal{H}} S = U$. Show that for any integer n that is a power of 2, there is an instance of SET COVER with the following properties:
 - (a) There are n elements in the ground set.
 - (b) The optimal cover uses just two sets.
 - (c) The greedy algorithm picks at least $\log n$ sets.

5. Solve any *one* of (a) or (b).

(a) Given a string X of size n, a subsequence of X is any string that is of the form

 $X[i_1]X[i_2]\cdots X[i_k], i_j < i_{j+1} \text{ for } j = 1, \dots, k;$

that is, it is a sequence of characters that are not necessarily contiguous but are nevertheless taken in order from X. For example, the string AAAG is a subsequence of the string CGATAATTGAGA.

Given two character strings, X of size n and Y of size m, over some alphabet, describe an algorithm that finds a longest string S that is a subsequence of both X and Y.

(b) Devise an algorithm that takes a sequence x[1...n] and returns the (length of the) longest palindromic subsequence – a sequence that reads the same both in the forward and backward direction. Its running time should be $O(n^2)$.